- Performs BCD, Bi-Quinary, or Binary Counting
- Fully Programmable
- Fully Independent Clear Input
- Input Clamping Diodes Simplify System Design
- Output QA_{A} Maintains Full Fan-out Capability In Addition to Driving Clock-2 Input

TYPES	GUARANTE		TYPICAL
	COU	EQUENCY	
	CLOCK 1	CLOCK 2	POWER DISSIPATION
'196, '197	0.50 MHz	$0-25 \mathrm{MHz}$	240 mW
'LS196, 'LS197	0.30 MHz	0.15 MHz	80 mW
'S196, 'S197	$0-100 \mathrm{MHz}$	0.50 MHz	375 mW

description

These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops, which are internally interconnected to provide either a divide-by-two and a divide-by-five counter ('196, 'LS196, 'S196) or a divide-by-two and a divide-by-eight counter l'197, 'LS197, 'S197). These four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.

During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks.

These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

All inputs are diode-clamped to minimize transmissionline effects and simplify system design. These circuits are compatible with most TTL logic families. Series 54, 54 LS , and 54 S circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series $74,74 \mathrm{LS}$, and $74 \mathrm{~S}^{\circ}$ circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54LS196, SN54S196
SN54LS 197. SN54S 197 ... FK PACKAGE
SN74LS196, SN74S196
SN74LS197, SN74S197 ... FN PACKAGE (TOP VIEW)

NC - No internal connection
logic symbols ${ }^{\dagger}$

${ }^{\dagger}$ Pin numbers shown on logic notation are for D, J or N packages.

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

TYPES SN54196，SN54197，SN54LS196，SN54LS197，SN54S196，SN54S197， SN74196，SN74197，SN74LS196，SN74LS197，SN74S196，SN74S197 50／30／100－MHz PRESETTABLE DECADE OR BINARY COUNTERS／LATCHES

typical count configurations
＇196，＇LS196，and＇S196 typical count configurations and function tables are the same as those for＇176．
＇197，＇LS197，and＇S197 typical count configurations and function tables are the same as those for＇ 177.
logic diagrams
＇196，＇LS196，and＇S196 logic diagrams are the same as those for＇176．
＇197，＇LS197，and＇S197 logic diagrams are the same as those for＇177．
schematics of inputs and outputs
EQUIVALENT OF COUNT／LOAD，
CLEAR，AND DATA INPUTS
Count／Ioad，Data： $\mathrm{R}_{\mathrm{eq}}=4 \mathrm{k} \Omega$ NOM
Clear： $\mathrm{R}_{\mathrm{eq}}=2 \mathrm{k} \Omega$ NOM

TYPICAL OF ALL OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the clear and count/load inputs.

recommended operating conditions

		SN54196, SN54197			SN74196, SN74197			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, $\mathrm{V}_{\text {CC }}$		4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH				-800			-800	$\mu \mathrm{A}$
Low-level output current, 1OL				16			16	mA
Count frequency	Clock-1 input	0		50	0		50	MHz
	Clock-2 input	0		25	0		25	
Pulse width, t_{w}	Clock-1 input	10			10			ns
	Clock-2 input	20			20			
	Clear	15			15			
	Load	20			20			
Input hold time, $\mathrm{th}^{\text {h }}$	High-level data	${ }^{\text {tw }}$ (load)			$\mathrm{t}_{\text {w }}$ (load)			ns
	Low-level data	${ }^{\text {w }}$ (lload)			$\mathrm{t}_{\text {w }}$ (load)			
Input setup time, ${ }^{\text {s }}$ (${ }^{\text {(see Note }} 4$)	High-level data	10			10			ns
	Low-level data	15			15			
${\mathrm{Count} \mathrm{enable} \mathrm{time,} \mathrm{t}_{\text {en }} \text { (see Note 3) }}_{\text {Operating free-air temperature, } \mathrm{T}_{\mathrm{A}}}$		20			20			ns
		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 3. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.
4. $t_{s u}$ is measured with respect to load input.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

NOTE 5: ICC is measured with all inputs grounded and all outputs open.
${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
II Q_{A} outputs are tested at $I_{O L}=16 \mathrm{~mA}$ plus the limit value of $I_{I L}$ for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54/74 loads.
§ Not more than one output should be shorted at a time.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {® }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54 196 SN74196			SN54197 SN74197			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	Clock 1	O_{A}	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega, \end{aligned}$ See Note 6	50	70		50	70		MHz
tPLH	Clock 1	Q_{A}			7	12		7	12	
tphL					10	15		10	15	ns
tPLH	Clock 2	O_{B}			12	18		12	18	
tPHL					14	21		14	21	
tPLH	Clock 2	O_{C}			24	36		24	36	
tPHL					28	42		28	42	s
${ }_{\text {tPLH }}$	Clock 2	Q_{D}			14	21		36	54	ns
tPHL					12	18		42	63	
tPLH	A, B, C, D	$\mathrm{a}_{A}, \mathrm{a}_{B}, \mathrm{a}_{\mathrm{C}}, \mathrm{a}_{\mathrm{D}}$			16	24		16	24	ns
${ }^{\text {tPHL }}$					25	38		25	38	
${ }_{\text {tPLH }}$	Load	Any			22	33		22	33	ns
tPHL					24	36		24	36	
tPHL	Clear	Any			25	37		25	37	ns

$\nabla_{f_{\text {max }}} \equiv$ maximum count frequency.
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output.
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output.
NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the ' 176 , ' 177 except that testing $f_{\text {max }}, \mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}$.

TYPES SN54LS196, SN54LS197, SN74LS196, SN74LS197 $30-\mathrm{MHz}$ PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the clear and count/load inputs.
recommended operating conditions

NOTE 3: Minimum count enabie time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

Texas

TYPES SN54LS196，SN54LS197，SN74LS196，SN74LS197
 30－MHz PRESETTABLE DECADE OR BINARY COUNTERS／LATCHES

electrical characteristics over recommended operating free－air temperature range（unless otherwise noted）

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$			SN54LS196 SN54LS197			SN74LS196 SN74LS197			UNIT			
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$V_{\text {IH }}$ High－level input voltage									2			2			V
$V_{\text {IL }}$ Low－level input voltage								0.7			0.8	V			
$\mathrm{V}_{\text {IK }}$ Input clamp voltage			$V_{C C}=\mathrm{MIN}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$					－1．5			－1．5	V			
$V_{\text {OH }}$ High－level output voltage			$\begin{aligned} & V_{C C}=\mathrm{MIN}^{2} \quad V_{I H}=2 \mathrm{~V} . \\ & V_{I L}=V_{I L} \text { max } \cdot I_{O H}=-400 \mu \mathrm{~A} \end{aligned}$			2.5	3.4		2.7	3.4		V			
VOL Low－level output voltage			$\begin{aligned} & V_{\text {CC }}=M I N, \quad V_{\text {IH }}=2 V, \\ & V_{\text {IL }}=V_{\text {IL }} \text { max } \end{aligned}$		$1 \mathrm{OL}=4 \mathrm{mAf}$		0.25	0.4		0.25	0.4	v			
			$1 \mathrm{OL}=8 \mathrm{mAl}$					0.35	0.5						
11	Input current at maximum input voltage	Data，count／load			$V_{C C}=\mathrm{MAX}, \quad V_{1}=5.5 \mathrm{~V}$					0.1			0.1	mA	
		Clear，clock 1						0.2			0.2				
		Clock 2 of＇LS196						0.4			0.4				
		Clock 2 of＇LS197						0.2			0.2				
$\mathrm{I}_{\mathbf{H}}$	High－level input current	Data，count／load	$V_{C C}=$ MAX,	$V_{1}=2.7 \mathrm{~V}$	：			20			20	$\mu \mathrm{A}$			
		Clear，clock 1						40			40				
		Clock 2 of＇LS 196						80			80				
		Clock 2 of＇LS197						40			40				
IIL	Low－level Input current	Data，count／load	$V_{C C}=$ MAX，$\quad V_{1}=0.4 V$					－0．4			－0．4	mA			
		Clear					－0．8			－0．8					
		Clock 1					－2．4			－2．4					
		Clock 2 of＇LS 196					－2．8			－2．8					
		Clock 2 of＇LS197					－1．3			－1．3					
IOS Short－circuit output current§			$V_{C C}=M A X$			－20		－100	－20		－100	mA			
ICC Supply current			$V_{C C}=$ MAX，\quad See Note 4				16	27		16	27	mA			

${ }^{\dagger}$ For conditions shown as MIN or MAX，use the appropriate value specified under recommended operating conditions．
$\dagger_{A l l}$ typical values are at $V_{C C}=5 \mathrm{~V} . \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ ．
§Not more than one output should be shorted at a time，and duration of the short－circuit should not exceed one second．
Q_{A} outputs are tested at specified $I_{O L}$ plus the limit value of $I_{I L}$ for the clock－ 2 input．This permits driving the clock－ 2 input while maintain ing full fan－out capability．
NOTE 4：ICC is measured with all inputs grounded and all outputs open．
switching characteristics， $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\circ}$	FROM （INPUT）	TO （OUTPUT）	TEST CONDITIONS	SN54LS196 SN74LS196			SN54LS197 SN74LS197			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	Clock 1	Q_{A}	$\begin{aligned} & L=15 \mathrm{pl} \\ & L=2 \mathrm{k} \Omega \\ & \text { ee Note } 5 \end{aligned}$	30	40		30	40		MHz
${ }_{\text {tPLH }}$	Clock 1	$\mathbf{Q}_{\mathbf{A}}$			8	15		8	15	ns
tPHL					13	20		14	21	
tPLH	Clock 2	Q_{B}			16	－ 24		12	19	ns
tPHL					22	33		23	35	
${ }_{\text {t PLH }}$	Clock 2	O_{C}			38	57		34	51	ns
${ }^{\text {P PHL }}$					41	62		42	63	
${ }^{\text {t PLH }}$	Clock 2	Q_{D}			12	18		55	78	ns
${ }^{\text {tPHL }}$					30	45		63	95	
${ }^{\text {tPLH }}$	A，B，C，D	$\mathrm{O}_{A}, \mathrm{O}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}} \mathrm{O}_{\mathrm{D}}$			20	30		18	27	ns
tPHL					29	44		29	44	
tPLH	Load	Any			27	41		26	39	ns
${ }_{\text {tPHL }}$					30	45		30	45	
tPHL	Clear	Any			34	51		34	51	ns

$f_{\text {max }} \equiv$ maximum count frequency
$t_{\text {LH }} \equiv$ propagation delay time，low－to－high－level output，$t_{P H L} \equiv$ propagation delay time，high－to－low－level output
NOTE 5：Load circuit，input conditions，and voltage waveforms are the same as those shown for the＇ 176,177 except that $\mathrm{t}_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 6 \mathrm{~ns}$, and $V_{\mathrm{ref}}=$ 1.3 V （as opposed to 1.5 V ）

TYPES SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE AND BINARY COUNTERSILATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

		SN54S 196, SN54S 197			SN74S196, SN74S197			UNIT
		MIN	NOM	MAX	MiN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}				-1			-1	mA
Low-level output current, IOL				20			20	mA
Clock frequency	Clock-1 input	0		100	0		100	MHz
	Clock-2 input	0		50	0		50	
Pulse width, t_{w}	Clock-1 input	5			5			ns
	Clock-2 input	10			10			
	Clear	30			30			
	Load	5			5			
Input hold time, th	High-level data	$3 \uparrow$			$3 \uparrow$			ns
	Low-level data	$3 \uparrow$			$3 \uparrow$			
Input setup time, $\mathrm{t}_{\text {su }}$ (see Note 6)	High-level data	$6 \uparrow$			$6 \uparrow$			ns
	Low-level data	$6 \uparrow$			$6 \uparrow$			ns
Count enable time, $\mathrm{t}_{\text {en }}$ (see Note 2)		12			12			ns
Operating free-air temperature, T_{A}		-55		125	0		70	C

NOTES: 2. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs are both high to permit counting.
6. $t_{\text {su }}$ is measured with respect to load input.

TYPES SN54S196, SN54S197, SN74S196, SN74S197
 $100-\mathrm{MHz}$ PRESETTABLE DECADE AND BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger			SN54S196, SN74S196		SN54S197, SN74S197		UNIT			
		MIN	TYP \ddagger MAX	MIN	TYP \ddagger MAX							
$\mathrm{V}_{\text {IH }}$								2		2		V
$V_{\text {IL }}$						0.8		0.8	V			
$V_{\text {IK }}$		$\mathrm{V}_{\text {CC }}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2		-1.2	V			
VOH		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	54S	2.5	3.4	2.5	3.4				
		74 S		2.7	3.4	2.7	3.4					
$\mathrm{V}_{\text {OL }}$			$\begin{array}{lll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}, & \end{array}$				0.5		0.5	V		
1		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$				1		1	mA			
$\mathrm{I}_{1 \mathrm{H}}$	Clock 1, clock 2	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			150		150	$\mu \mathrm{A}$			
	All other inputs					50		50				
IIL	Data, count/load Clear	$V_{C C}=$ MAX,	$V_{1}=0.5 \mathrm{~V}$			-0.75		-0.75	mA			
	Clock 1					-8		-8	mA			
	Clock 2					-10		-6	mA			
Ios§		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			-30	-110	-30	-110	mA			
${ }^{\text {ICC }}$		$V_{C C}=M A X$,	See Note 3	54S		$75 \quad 110$		$75 \quad 110$	mA			
		74S			$75 \quad 120$		75120					

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
I Q_{A} outputs are tested at $I_{O L}=20 \mathrm{~mA}$ plus the limit value of $I_{I L}$ for the clock -2 input. This permits driving the clock -2 input while fanning out to 10 Series 54S/74S loads.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one secand.
NOTE 3: ICC is measured with all inputs grounded and all outputs open.
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\circ}$	(FROM	то	TEST CONDITIONS	SN54S196, SN74S196			SN54S197, SN74S197			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	Clock 1	$\mathrm{O}_{\text {A }}$	$R_{L}=280 \Omega, \quad C_{L}=15 \mathrm{pF},$ See Note 4	100	140		100	140	.	MHz
tPLH	Clock 1	Q_{A}			5	10		5	10	ns
tPHL					6	10		6	10	
${ }_{\text {tPLH }}$	Clock 2	O_{B}			5	10		5	10	ns
tPHL					8	12		8	12	
${ }^{\text {tPLH }}$	Clock 2	O_{C}			12	18		12	18	ns
${ }^{\text {P PHL }}$					16	24		15	22	
${ }^{\text {tPLH}}$	Clock 2	O_{D}			5	10		18	27	ns
- tPHL					8	12		22	33	
${ }^{\text {P PL H }}$	A,B,C,D	$\mathrm{O}_{A}, \mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}, \mathrm{O}_{\mathrm{D}}$			7	12		7	12	ns
${ }^{\text {P PHL }}$					12	18		12	18	
${ }^{\text {tPLH }}$	Load	Any			10	18		10	18	ns
tPHL					12	18		12	18	
tPHL	Clear	Any			26	37		26	37	ns

$\Delta f_{\text {max }}=$ maximum input county frequency .
$\mathbf{t}_{\text {PLH }}=$ propagation delay time, low-to-high-level output.
= propagation delay time, high-to-low-leve output.
NOTE 4: See General Information Section for load circuits and voltage waveforms.

