for application as TTL MSI PARALLEL-IN SERIAL-OUT REGISTERS #### **Dual-Source, Parallel-To-Serial Converter** These monolithic shift registers which utilize transistor-transistor logic (TTL) circuits in the familiar Series 54/74 configuration, are composed of four R-S master-slave flip-flops, four AND-OR-INVERT gates, and four inverter-drivers. Internal interconnections of these functions provide a versatile register which performs right-shift operations as a serial-in, serial-out register or as a dual-source, parallel-to-serial converter. A number of these registers may be connected in series to form an n-bit register. All flip-flops are simultaneously set to a low output level by applying a high-level voltage to the clear input while the internal presets are inactive (high). See the preset function table below. Clearing is independent of the level of the clock input. The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to either the P1 or P2 inputs of each register stage (A, B, C, and D) with the corresponding preset enable input, PE1 or PE2, high. Presetting, like clearing, is independent of the level of the clock #### Serial-In Serial-Out Register SN5494...J OR W PACKAGE SN7494...J OR N PACKAGE (TOP VIEW) | P1A | | | 16 | P2A | |-----|----|---|----|--------------| | P1B | | 2 | 15 | PE2 | | P1C | | 3 | 14 | P2B | | P1D | | 1 | 13 | P2C | | Vcc | | 5 | 12 | GND | | PE1 | Пе | 6 | 11 | P2D | | SER | | , | 10 | CLR | | CLK | Q٤ | 3 | 9 | σ_{D} | Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be setup at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information for the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be at a low level and the internal presets must be inactive (high) when clocking occurs. #### PRESET FUNCTION TABLE (RIT A TYPICAL OF ALL) | | SII A | <u>, 1 TP</u> | ICAL | OF ALL! | |-----------|-------|---------------|----------|--------------| | PR | ESET | INTERNAL | | | | PE1 | P1A | PE2 | PRESET A | | | L | Х | L | Х | H (inactive) | | L | X | X | L | H (inactive) | | x | L | L | Х | H (inactive) | | х | L | X | L | H (inactive) | | н | Н | X | × | L (active) | | <u> x</u> | Х | <u>H</u> | н | L (active) | #### REGISTER FUNCTION TABLE | INTERNAL PRESETS | | | | INPUTS | | INTER | OUTPUT | | | | |------------------|----|---|---|--------|----------|--------|-----------------|---------------|---------------------|-----------------| | A | В | С | D | CLEAR | CLOCK | SERIAL | QΑ | QB | ΩC | α _D | | Н | Н | Н | Н | Н | × | X | L | L | L | L | | L | L | L | L | L | X | X | н | Н | н | н | | н | H. | Н | Н | L | L | X | ∩ _{A0} | α_{B0} | a_{co} | α_{D0} | | L | Н | L | Н | L | L | X | н | Q_{B0} | • н | a_{D0} | | н | Н | Н | Н | L | ↑ | Н | н | Q_{An} | $oldsymbol{o}_{Bn}$ | Q _{Cn} | | Н | Н | Н | H | L | ↑ | L | L | Q_{An} | Q_{Bn} | Q _{Cn} | H = high level (steady state), L = low level (steady state), X = irrelevant, 1 = transition from low to high level Q_{AO} , Q_{BO} , Q_{CO} , Q_{DO} = the level of Q_{A} , Q_{B} , Q_{C} , or Q_{D} , respectively, before the indicated steady-state input conditions were established. QAn, QBn, QCn = the level of QA, QB, or QC, respectively, before the most-recent 1 transition of the clock. #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage, VCC (see Note 1) | | - | | • | | | | • | | | | • | | · | | ٠ | | | | | | | 7 | 'V | |--------------------------------------|----|----|-----|-----|-----|-----|-----|----|--|--|--|---|--|---|--|---|--|--|---|-----|-----|------|------|----| | Input voltage (see Note 2) | 5.5 | ί۷ | | Operating free-air temperature range | e: | SN | 154 | 494 | l C | irc | uit | ts | | | | | | | | | | | _ | -55 | °C | to | 125 | °C | | | | SN | 174 | 494 | l C | irc | uit | ts | | | | | | | | | | | | . 1 | o°(| C to | o 70 | °C | | Storage temperature range | NOTES: 1. Voltage values are with respect to network ground terminal. 2. Input voltage must be zero or positive with respect to network ground terminal. PRODUCTION DATA This document contains information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 #### logic diagram Pin numbers shown on logic notation are for J or N packages. #### schematics of inputs and output # TYPES SN5494, SN7494 4-BIT SHIFT REGISTERS #### recommended operating conditions | | | | SN549 | 1 | , | SN7494 | 4 | | |--|-----------------|------|-------|------|------|--------|------|----------| | | | MIN | NOM | MAX | MIN | MOM | MAX | UNIT | | Supply voltage, V _{CC} | | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V | | High-level output current, IOH | | | | -400 | | | -400 | μА | | Low-level output current, IOL | | | | 16 | | | 16 | mA | | Width of clock pulse, tw(clock) | | 35 | | | 35 | | | ns | | Width of clear pulse, tw(clear) | | 30 | | | 30 | | | ns | | Width of preset pulse, tw(preset) | | 30 | | | 30 | | | ns | | Control of the contro | High-level data | - 35 | | | 35 | | | | | Setup time, t _{su} | Low-level data | 25 | | | 25 | | | ns | | Hold time, th | | 0 | | | 0 | | | ns | | Operating free-air temperature, TA | | -55 | | 125 | 0 | | 70 | °С | #### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | DADAMETER | | TEST CONDITIONS† | | SN5494 | 1 | | SN7494 | 1 | | |----------|----------------------------|-----------------|---|-----|--------|------|-----|--------|------|------| | | PARAMETER | i | TEST CONDITIONS | MIN | TYP‡ | MAX | MIN | TYP‡ | MAX | UNIT | | v_{iH} | High-level input voltage | • | | 2 | | | 2 | | | V | | VIL | Low-level input voltage | | | | | 0.8 | | | 0.8 | V | | Vон | High-level output voltage | | V _{CC} = MIN, V _{IH} = 2 V,
V _{IL} = 0.8 V, I _{OH} = -400 μA | 2.4 | 3.5 | | 2.4 | 3.5 | | V | | VOL | Low-level output voltage | | V _{CC} = MIN, V _{IH} = 2 V,
V _{IL} = 0.8 V, I _{OL} = 16 mA | | 0.2 | 0.4 | | 0.2 | 0.4 | V | | Ц | Input current at maximum | input voltage | V _{CC} = MAX, V _I = 5.5 V | | | 1 | | | 1 | mA | | L | High lovel input aureant | Presets 1 and 2 | V | | | 160 | | | 160 | | | lН | High-level input current | Other inputs | $V_{CC} = MAX, V_I = 2.4 V$ | | | 40 | | | 40 | μΑ | | 1 | Law level input avenue | Presets 1 and 2 | Varanay Varanay | | | -6.4 | | | -6.4 | 0 | | 'IL | Low-level input current | Other inputs | V _{CC} = MAX, V _I = 0.4 V | | | -1.6 | | | -1.6 | mA | | los | Short-circuit output curre | nt§ | V _{CC} = MAX | -20 | | -57 | -18 | | -57 | mA | | Icc | Supply current | | V _{CC} = MAX, See Note 3 | | 35 | 50 | | 35 | 58 | mA | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ### switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|--|---------------------------------------|-----|-----|------|------| | f _{max} | Maximum clock frequency | | 10 | | | MHz | | ^t PLH | Propagation delay time, low-to-high-level output from clock | | | 25 | 40 | ns | | ^t PHL | Propgaation delay time, high-to-low-level output from clock | Ct = 15 pF, Rt = 400 Ω,
See Note 4 | | 25 | . 40 | ns | | ^t PLH | Propagation delay time, low-to-high-level output from preset | See Note 4 | | | 35 | ns | | ^t PHL | Propagation delay time, high-to-low-level output from clear | | | | 40 | ns . | NOTE 4 See General Information Section for load circuits and voltage waveforms. $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time. NOTE 3: ICC is measured with the outputs open, clear grounded following momentary application of 4.5 V, both preset-enable inputs grounded, and all other inputs at 4.5 V.