
- Uses a Crystal or a TTL Signal for Frequency Source
- Single + 5V Power Supply
- 18-Pin Package

- Schmitt Trigger Input
- Provides Local Ready and MULTIBUS[™] **Ready Synchronization**
- Capable of Clock Synchronization with other 8284's

The 8284 is a bipolar clock generator/driver designed to provide clock signals for the 8086, 8088 & 8089 and peripherals. It also contains READY logic for operation with two MULTIBUSTM systems and provides the processors required READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided.

		82	284		PPA			
PIN DEFINITIONS		Pin I/O		Definition				
Pin AEN1, AEN2	I/O I	Definition ADDRESS ENABLE. AEN is an active LOW signal. AEN serves to qualify its respective Bus Ready Signal (RDY1 or	OSC	0	OSCILLATOR OUTPUT. OSC is the TTL level output of the internal oscillator cir- cuitry. Its frequency is equal to that of the crystal.			
		RDY2). AEN1 validates RDY1 while AEN2 validates RDY2. Two AEN signal inputs are useful in system configurations which permit the processor to access two Multi-Master System Busses. In non Multi-Master configurations the AEN	RES	1	RESET IN. RES is an active LOW signal which is used to generate RESET. The 8284 provides a Schmitt trigger input so that an RC connection can be used to establish the power-up reset of proper duration.			
RDY1, RDY2	Ι	signal inputs are tied true (LOW). BUS READY (Transfer Complete). RDY is an active HIGH signal which is an indica- tion from a device located on the system	RESET	0	RESET. Reset is an active HIGH signal which is used to reset the 8086 family processors. Its timing characteristics are determined by RES.			
		data bus that data has been received, or is available. RDY1 is qualified by AEN1 while RDY2 is qualified by AEN2.	CSYNC	I	CLOCK SYNCHRONIZATION. CSYNC is an active HIGH signal which allows mul- tiple 8284's to be synchronized to pro-			
READY	0	READY. READY is an active HIGH signal which is the synchronized RDY signal in- put. Since RDY occurs asynchronously with respect to the clock (CLK) it may be necessary for them to be syn- chronized before being presented to the 8284. READY is cleared after the guaranteed hold time to the processor has been met.			vide clocks that are in phase. When CSYNC is HIGH the internal counters are reset. When CSYNC goes LOW the in- ternal counters are allowed to resume counting. CSYNC needs to be externally synchronized to EFI. When using the in- ternal oscillator CSYNC should be hard- wired to ground.			
X1, X2,	I	CRYSTAL IN. X1 and X2 are the pins to	GND V _{CC}		Ground + 5V supply			
TNK		which a crystal is attached with TNK (TANK) serving as the overtone input. The crystal frequency is 3 times the desired processor clock frequency.		ION				
F/C	.I	FREQUENCY/CRYSTAL SELECT. F/\overline{C} is a strapping option. When strapped LOW,						
		F/ \overline{C} permits the processor's clock to be generated by the crystal. When F/ \overline{C} is strapped HIGH, CLK is generated from the EFI input.	GENERAL The 8284 is a single chip clock generator/driver for the 8086, 8088 & 8089 processors. The chip contains a crystal controlled oscillator, a "divide by three" counter, complete MULTIBUS TM "Ready" synchroniza- tion and reset logic.					
EFI	I ,	EXTERNAL FREQUENCY IN. When F/\overline{C} is strapped HIGH, CLK is generated from the input frequency appearing on this						
		pin. The input signal is a square wave 3 times the frequency of the desired CLK output.			circuit of the 2024 is designed primarily			
CLK	0	PROCESSOR CLOCK. CLK is the clock output used by the processor and all devices which directly connect to the processor's local bus (i.e., the bipolar support chips and other MOS devices). CLK has an output frequency which is	The oscillator circuit of the 8284 is designed primarily for use with an external series resonant, fundamental mode, crystal from which the basic operating frequency is derived. However, overtone mode crystals can be used with a tank circuit as shown in Figure 1.					
		1/3 of the crystal or EFI input frequency and a 1/3 duty cycle. An output HIGH of 4.5 volts (V_{CC} = 5V) is provided on this pin to drive MOS devices.	The crystal frequency should be selected at three times the required CPU clock. X_1 and X_2 are the two crystal input crystal connections.					
PCLK	0	PERIPHERAL CLOCK. PCLK is a TTL level peripheral clock signal whose out- put frequency is 1/2 that of CLK and has a 50% duty cycle.	The output of the oscillator is buffered and brought out on OSC so that other system timing signals can be derived from this stable, crystal-controlled source.					

The tank input to the oscillator allows the use of overtone mode crystals. The tank circuit shunts the crystal's fundamental and high overtone frequencies and allows the third harmonic to oscillate. The external LC network is connected to the TANK input and is AC coupled to ground.

Figure 1

CLOCK GENERATOR

The clock generator consists of a synchronous divideby-three counter with a special clear input that inhibits the counting. This clear input (CSYNC) allows the output clock to be synchronized with an external event (such as another 8284 clock). It is necessary to synchronize the CSYNC input to the EFI clock external to the 8284. This is accomplished with two Schottky flip-flops. (See Figure 2.) The counter output is a 33% duty cycle clock at one-third the input frequency.

The F/\overline{C} input is a strapping pin that selects either the crystal oscillator or the EFI input as the clock for the \div 3 counter. If the EFI input is selected as the clock source, the oscillator section can be used independently for another clock source. Output is taken from OSC.

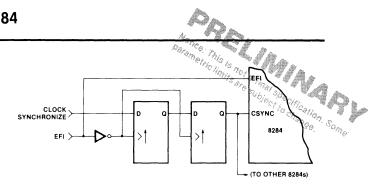


Figure 2. CSYNC Synchronization

CLOCK OUTPUTS

The CLK output is a 33% duty cycle MOS clock driver designed to drive the 8086 processor directly. PCLK is a TTL level peripheral clock signal whose output frequency is 1/2 that of CLK. PCLK has a 50% duty cycle.

RESET LOGIC

The reset logic provides a Schmitt trigger input (RES) and a synchronizing flip-flop to generate the reset timing. The reset signal is synchronized to the falling edge of CLK. A simple RC network can be used to provide power on reset by utilizing this function of the 8284.

READY SYNCHRONIZATION

Two READY inputs (RDY1, RDY2) are provided to accomomodate two Multi-Master system busses. Each input has a qualifier (AEN1 and AEN2, respectively). The AEN signals validate their respective RDY signals. If a Multi-Master system is not being used the AEN pin should be tied LOW.

Synchronization is required for all asynchronous active going edges of either RDY input to guarantee that the RDY setup and hold times are met. Inactive going edges of RDY in normally ready systems do not require synchronization but must satisfy RDY setup and hold as a matter of proper system design. Synchronization may be accomplished by inserting a D flip flop between an asynchronous RDY source and the 8284 and clocking the flip flop on the rising edge of CLK. The 8284 READY logic guarantees the required 8086 READY hold time before clearing the READY signal.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias $0^{\circ}C$ to $70^{\circ}C$ Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$ All Output and Supply Voltages-0.5V to +7VAll Input Voltages-1.0V to +5.5VPower Dissipation1 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS FOR 8284

		828	34		
	ACTERISTICS FOR 8284 $A = 0$ °C to 70 °C; $V_{CC} = 5V \pm 10\%$				Parametric limits as a final as a cline of the second seco
Symbol	Parameter	Min	Max	Units	Test Conditions
l _F	Forward Input Current		- 0.5	mA	$V_{\rm F} = 0.45V$ $V_{\rm F} = 5.25V$ $V_{\rm F} = 5.25V$
IR	Reverse Input Current		50	μA	V _R =5.25V
V _C	Input Forward Clamp Voltage		- 1.0	v	$I_{\rm C} = -5 \mathrm{mA}$
Icc	Power Supply Current		140	mA	
VIL	Input LOW Voltage		0.8	v	V _{CC} = 5.0V
VIH	Input HIGH Voltage	2.0		V	V _{CC} = 5.0V
VIHR	Reset Input HIGH Voltage	2.6		V	V _{CC} = 5.0V
V _{OL}	Output LOW Voltage		0.45	v	5 mA
V _{OH}	Output HIGH Voltage CLK Other Outputs	4 2.4		v v	– 1 mA – 1 mA
VIHR ^{-VILR}	RES Input Hysteresis	0.25		v	$V_{CC} = 5.0V$

A.C. CHARACTERISTICS FOR 8284

Conditions: $T_A = 0$ °C to 70 °C; $V_{CC} = 5V \pm 10\%$ TIMING REQUIREMENTS

Symbol	Parameter	Min	Max	Units	Test Conditions
TEHEL	External Frequency High Time	13		ns	90% - 90% V _{IN}
TELEH	External Frequency Low Time	13		ns	10% - 10% V _{IN}
TELEL	EFI Period	TEHEL + TELEH + δ		ns	(Note 1)
	XTAL Frequency	12	25	MHz	
TR1VCL	RDY1, RDY2 Set-Up to CLK	35		ns	
TCLR1X	RDY1, RDY2 Hold to CLK	0		ns	
TA1VR1V	AEN1, AEN2 Set-Up to RDY1, RDY2	15		ns	
TCLA1X	AEN1, AEN2 Hold to CLK	0		ns	
ТҮНЕН	CSYNC Set-Up to EFI	20		ns	
TEHYL	CSYNC Hold to EFI	20		ns	
TYHYL	CSYNC Width	2 TELEL		ns	
TI1HCL	RES Set-Up to CLK	65		ns	(Note 2)
TCLI1H	RES Hold to CLK	20		ns	(Note 2)

TIMING RESPONSES

Symbol	Parameter	Min	Max	Units	Test Conditions
TCLCL	CLK Cycle Period	125		ns	
TCHCL	CLK High Time	(1/3 TCLCL) + 2.0		ns	Fig. 3 & Fig. 4
TCLCH	CLK Low Time	(² / ₃ TCLCL) - 15.0		ns	Fig. 3 & Fig. 4
TCH1CH2 TCL2CL1	CLK Rise or Fall Time		10	ns	1.0V to 3.5V
TPHPL	PCLK High Time	TCLCL – 20		ns	
TPLPH	PCLK Low Time	TCLCL – 20		ns	
TRYLCL	Ready Inactive to CLK (See Note 4)	-8		ns	Fig. 5 & Fig. 6
TRYHCH	Ready Active to CLK (See Note 3)	(² / ₃ TCLCL)-15.0		ns	Fig. 5 & Fig. 6
TCLIL	CLK to Reset Delay	40		ns	
TCLPH	CLK to PCLK High Delay		22	ns	· · · · · · · · · · · · · · · · · · ·
TCLPL	CLK to PCLK Low Delay		22	ns	
TOLCH	OSC to CLK High Delay	-5	12	ns	· · · · · · · · · · · · · · · · · · ·
TOLCL	OSC to CLK Low Delay	2	20	ns	

Notes: 1. δ = EFI rise (5 ns max) + EFI fall (5 ns max). 2. Set up and hold only necessary to guarantee recognition at next clock.

3. Applies only to T3 and TW states.

4. Applies only to T2 states.

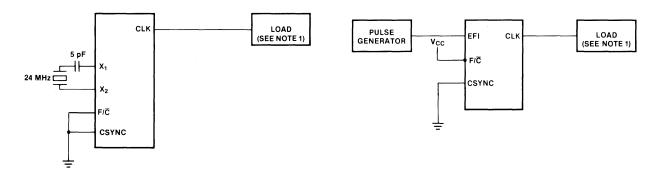



Figure 3. Clock High and Low Time

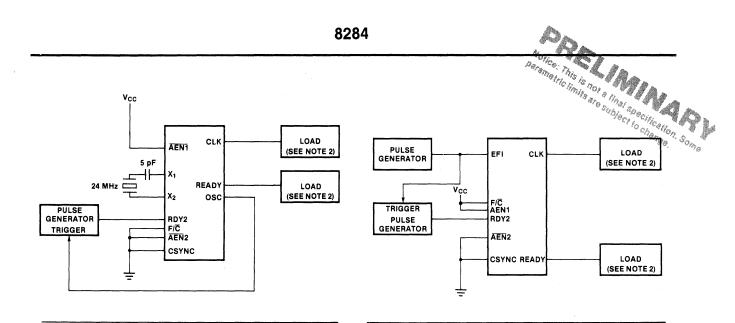
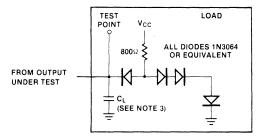



Figure 5. Ready to Clock

Figure 6. Ready to Clock

